

Physical Mechanisms for Optical Modulators							
 Electro-optic modulators Nonlinear crystals LiNbO₃, GaAs, InP Franz-Keldysh effect Sub-bandgap absorption induced by 	 Free carriers effect Refractive index change due to electrons/holes All semiconductors, including Si 						
 electric field – GaAs, InP Quantum confined Stark Effect (QCSE) – Absorption modulators in quantum wells – Mostly III-V, but also SiGe QWs 	 Thermo-optic effect Refractive index change due to temperature All semiconductors, including Si 						
EE232 Lecture 23-2	Prof. Ming Wu						

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ptic n / V) 30.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.4
$\overline{42m}$ KH_2PO_4 1.5115 1.4698 0.546 $r_{41} = r_{52} = 8.77, r_{63} = r_{63} = 11$ (KDP) 1.5074 1.4669 0.633 $r_{41} = r_{52} = 8, r_{63} = 11$.93
$r_{41} = r_{52} = 0, r_{63} = 11$	= 10.3
42 <i>m</i> NH ₄ H ₂ PO ₄ 1.5266 1.4808 0.546 $r_{41} = r_{52} = 23.76, r_{63} = (ADP)$ 1.5220 1.4773 0.633 $r_{44} = r_{52} = 23.41, r_{53} = r_{53} = 23.41, r_{53} = 10.512$	= 8.56 = 7.828
$\overline{42}m$ KD ₂ PO ₄ 1.5079 1.4683 0.546 $r_{41} = r_{52} = 8.8, r_{63} = 2.500$ (KD*P)	26.8
$\overline{43m}$ GaAs 3.60 = n_o 0.9 $r_{41} = r_{52} = r_{63} = 1.1$ 3.42 = n_o 1.0 $r_{41} = r_{52} = r_{63} = 1.5$ 3.34 = n_o 106 $r_{41} = r_{52} = r_{63} = 1.5$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5
$\overline{43m}$ ZnSe 2.60 = n_o 0.633 $r_{41} = r_{52} = r_{63} = 2.0$)

 $\begin{array}{l} \overbrace{Pot} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ F = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ r_{41} & 0 & 0 \\ 0 & r_{52} & 0 \\ 0 & 0 & r_{63} \end{array} \right] \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \begin{array}{l} A p p ly electric field in z direction: \\ \begin{array}{l} x^2 \\ n_o^2 + \frac{y^2}{n_o^2} + \frac{z^2}{n_e^2} + 2r_{63}F_z xy = 1 \\ n_{x'} = n_o + \frac{1}{2}n_o^3r_{63}F_z \\ n_{y'} = n_o - \frac{1}{2}n_o^3r_{63}F_z \\ \hline \end{array} \\ \begin{array}{l} F or \ GaAs \ at \ 1\mu m \ wavelength \\ n_o = 3.42, \quad r_{41} = r_{52} = r_{63} = 1.5 \times 10^{-12} \ m/V \\ F or \ applied \ field \ of \ 10^7 \ V/m \\ \Delta n = \frac{1}{2}n_o^3r_{63}F_z \approx 3 \times 10^{-4} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \ \end{array} \\ \begin{array}{l} \text{Note: Si is central symmetric and has no electro-optic effect} \\ \end{array}$

	Si	Macl	h-Ze	ehno	ler l	Mod	ulators	5			
Table 1. , Performance comparison of previously reported high-speed silicon MZMs (>25 Cb/s) and devices in this work.											
Reference	[17]	[15]	[25]	[27]	[24]	[26]&	L = 2 mm	L = 4 mm	L=6 mm		
Device length (mm) [%]	1	0.12	1.35	1	3.5	2.4	2	4	6		
$V_{\pi} \cdot L (V \cdot cm)$	4	0.5	11	2.8	2.7	2.4	2.4	2.08	1.86		
$V_{\pi}(V) *$	NA	NA	NA	NA	~8	10	12	5.2	3.1		
Insertion loss (dB)#	4	2.5	15	3.7	15	4.3	4.1	6.6	9.0		
Speed (Gb/s)	40	25	40	50	40	30	~50	~40	30		
^{$^{\infty}$} Device length: the phase shifter length rather than the whole device length. * V _π under dc. NA represents that the phase shifter is too short and a π-phase shift may not be achievable before breakdown voltage. ^{$^{\pm}$} Insertion loss is defined as the on-chip loss for the wavelength at maximum transmission of the MZMs. ^{$^{\pm}$} Devices in [26] and in this work are single-drive push-pull MZMs, while the rest are not.											
P. Dong, L. Chen, and Y. Chen, "High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators," Optics Express, vol. 20, no. 6, p. 6163, Mar. 2012.											
EE232 Lecture 23-18									Prof. Ming Wu		

